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APPENDIX 
Replacement of the calculated structure factor 

amplitude by the experimental one 

When for a reflection the exact value of the structure 
factor amplitude F ° is known and there is a 'calcu- 
lated' value of the structure factor F c exp (i~p~), com- 
mon practice is to use the 'mixed' value of the struc- 
ture factor F ° exp (i~o c) for further calculation. 

It can be seen that the value F ° exp (i~o ¢) is more 
exact than F ~ exp (i~o ¢) only when 

F C / F  ° > 1, or when F ~ / F  ° < 1 - 4  sin 2 (A~o/2). 

Here A~o is the error in the calculation of phase ~0 C. 
In particular, if A~o > rr/3, then for all F" < F ° the 

value F ° exp (iq~ ~) is less exact than F ~ exp (i~oc). 

This is why we must be careful in ascribing to the 
observed amplitude the calculated phase when F c is 
smaller than F °. 
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Abstract 

The shapes of the wide-angle X-ray reflexion profiles 
produced by materials comprising layer-type 
molecules, such as carbon fibres and pyrolytic 
graphites, are affected by distortions, sizes and prefer- 
ential orientation of the crystallites. In the present 
study, the diffraction intensity distribution of layer- 
type materials has been deduced theoretically as a 
function of structural parameters and measuring 
direction. The reflexion profiles of carbon fibres have 
been simulated to investigate the effects of structural 
parameters on the modulation of the diffraction 
pattern. 

I. Introduction 

The crystallites in non-graphitic carbons such as car- 
bon fibres and pyrolytic graphites are parallel stacks 
of individual graphite layers with no regularity of 
packing in mutual translations parallel to the layer. 
The wide-angle X-ray diffraction patterns of layer- 
type materials of this kind show 001 and hk reflexions, 
but do not exhibit general hkl reflexions. The hk 
reflexion profiles resulting from a random orientation 
of randomly stacked layers of finite size were first 
analysed by Warren (1941). 

0108-7673/88/020150-08503.00 

The hk reflexions are strongly asymmetric, and this 
peculiar peak shape is affected by preferential 
orientation of the crystallites. Guentert & Cvikevich 
(1964) have given a method to convert the hk reflexion 
profiles caused by randomly stacked layers of infinite 
size with preferential orientation into those with ran- 
dom orientation. Ruland & Tompa (1968, 1972) have 
expressed the hk reflexion profiles of randomly 
stacked layers as a function of the layer size and the 
degree of preferential orientation. 

In certain layer-type carbons, there exists some 
degree of regularity in mutual translations of neigh- 
bouring layers (Franklin, 1951; Ruland, 1965; Fischer 
& Ruland, 1980). With increasing regularity, the 
asymmetric hk reflexions turn into the symmetric hkl 
reflexions (Houska & Warren, 1954). Ruland (1965) 
has evaluated the degree of regularity for powder 
samples of graphitic carbons. 

This study analyses the wide-angle X-ray diffrac- 
tion by finite-size crystallites with preferential orienta- 
tion, comprising layer-type molecules stacked with 
Hosemann distortions of the second kind. The results 
of this study form the basis of trial-and-error evalu- 
ation of structural parameters. In the following dis- 
cussion, the structure of layer-type materials is 
expressed by the electron density distribution. Then, 
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the diffraction intensity distribution from a crystallite 
and material are deduced. Finally, the reflexion 
profiles are computed in order to show modulations 
of the diffraction pattern. 

Although layer-type carbons are analysed as a typi- 
cal example, the mathematical treatment developed 
in this study is applicable to layer-type materials in 
general. 

2. Structure of material 

The structural elements comprising layer-type car- 
bons are C atoms, two-dimensional unit cells, lattice 
layers, layer sets and stacks of layer sets. We shall 
define the density distribution function, which is the 
number per unit volume of origins of elements exist- 
ing at a position x from the origin of one rank higher- 
order ~'lement, as follows. 

p~(x): distribution of electrons in an atom. 
p,(x): distribution of atoms in a unit cell. 
p~(x): distribution of unit cells in a lattice layer. 
ps(X): distribution of lattice layers in a layer set. 
pc(x): distribution of layer sets in a stack of 

layer sets. 

Let us consider the electron density distribution of 
a unit cell. The number of atoms encountered in a 
volume element dvy at a position y from the origin 
of unit cell is p,,(y) dvy. Among the electrons belong- 
ing to an atom at a position y, the number per unit 
volume of those existing at a position x is p~(x-y) .  
Therefore, we find that, among the electrons belong- 
ing to all the atoms in this unit cell, the number per 
unit volume of those existing at a position x is given 
by ~pu(y)pa(x-y)dry .  That is, the electron density 
distribution of a unit cell is given by the convolution 
of pu(x) and pa(x). Similarly, the electron density 
distribution of a crystallite, p(x), is given by the 
convolution of pc(x), ps(X), pt(x), p~(x) and p,,(x). 

In a unit cell, two C atoms are situated respectively 
at positions x = 0 and x = 2a/3 +b/3 ,  where a and b 
are the vectors representing the periods of repetition 
of unit cells. The lattice layer comprises the unit-cell 
repetitions Na and Nb times in the respective direc- 
tions of a and b. In a layer set, two lattice layers are 
located at positions x = 0 and x = y. The position y 
distributes statistically around x = a/3 + 2b/3 +c /2  
with the probability distribution expressed as 8 [ y -  
(a/3 +2b/3  +c /2) ]*  D(y), where c is the vector rep- 
resenting the average period of repetition of layer 
sets, D(y) the probability distribution function with 
average y = 0, ~(y) the Dirac delta function, and * 
convolution. The convolution ~(Y-Yo)*f(Y) corre- 
sponds to the function f(y) translated by a vector Y0 
[see (48)]. 

In a crystallite, Nc layer sets are stacked with 
Hosemann distortion of the second kind. Here, 

the distortions of the second kind mean that the 
arrangement of elements is defined statistically by the 
probability distribution of spacing between nearest- 
neighbouring elements (Bonart, Hosemann & 
McCullough, 1963). We shall number the lattice 
layers in a crystallite in the order of arrangement. 
Then, for hexagonal-type packing, the probability 
distribution of spacing between the nth and (n + 1)th 
layers is expressed as /~[x-  (a/3 + 2b/3 + c/2)]* D(x), 
and that of spacing between the ( n + l ) t h  and 
(n+2) th  layers is shown as 6[x-(-a/3-2b/3+ 
c/2)] * D(x). Therefore, the probability distribution 
of spacing between the nth and (n+2) th  layers is 
given by the convolution of the above two probability 
distributions, that is, 6 ( x - c ) *  D(x)*  D(x) [see 
(46)-(48)]. This convolution is equivalent to the prob- 
ability distribution of spacing between nearest-neigh- 
bouring layer sets. 

We now number the layer sets in the order of 
arrangement. Then, the probability distribution of 
spacing between the nth and (n+2) th  layer sets 
is given by the convolution of two ~ ( x -  
c) * D(x) * D(x)'s and that of spacing between the nth 
and (n+3) th  layer sets is given by the convolution 
of three 6(x - c) * D(x) * D(x)'s. Therefore, the proba- 
bility distribution of spacing between the nth and 
(n + m)th layer sets is generally given by the convol- 
ution of m 8 ( x - c ) *  D(x)* D(x)'s. The probability 
distribution of spacing between the nth and (n - m)th 
layer sets is given by the convolution of m 6 ( - x -  
c) * D( - x) * D( -x ) ' s .  The probability distribution of 
spacing between a layer set and this layer set itself is 
given by 8(x). In consequence, the probability distri- 
bution of spacing between layer sets is given by the 
multiple convolution of 6 ( x - c ) *  D(x)* D(x)'s,  or of 
tS ( -x - c )*  D ( - x ) *  D( -x ) ' s ,  or t~(x). 

The function pc(x) is related to these probability 
distributions by the form of pc(x)*pc(-X). If the 
position of the nth layer set is denoted as x,,, pc(x) 
is represented as ~Nc 8(X--X,), and thus n=l 
pc(x)*pc(-x) becomes p c ( x ) * ~ l ~ 5 ( - x - x n ) .  By 
considering the relation 8 ( -x )  = ~(x) and using (48), 
we find that pc(x)*pc(-X)=~ Nc n=l Pc( x'Jl-Xn)" The 
density distribution pc(x+x, )  is the translation of 
pc(x) by the vector - x , ,  and represents the density 
distribution of layer sets when the origin of the distri- 
bution is located at the position of the nth layer set. 
The terminal points of a fixed vector x from some 
layer sets are situated outside the crystallite. We shall 
assign the numbers from Ni(x) + 1 to Nc to these layer 
sets. Then, pc(x + x,) becomes 0 for the layer sets with 
Ni(x) + 1 < n < Arc. For the remaining layer sets, 

, = l p c ( x + x , )  is expressed as Ni(x)(pc(x+x,)),  
where ()  stands for the average over the layer sets 
with 1---n < Ni(x). The average (pc(x+x,))  is given 
by the sum of the multiple convolutions of ~ ( x -  
c) * D(x) * D(x)'s and of ~ ( -x  - c) * D ( - x )  * D( -x ) ' s ,  
and ~(x). 
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The structure mentioned above is therefore written 
in the mathematical expressions as follows. 

D(X)=pc(X)*ps(X)*pl(X)*Du(X)*pa(X). ( 1 )  

p,,(x)=6(x)+6[x-(2a/a+b/3)]. (2) 

Na-1 Nb--I 
pl(x)= Y. ~ 6 [ x - ( m a + n b ) ] .  (3) 

m = 0  n = O  

p~(x) = 6(x) + 6 ( x - y ) ,  (4) 

where y distributes statistically according to the func- 
tion 6 [ y - ( a / 3 +  2 b / 3 + c / 2 ) ] *  D(y). 

re(x)* p~(-x) 

= N,(x){6(x)+ ~ [ 6 ( x - c ) *  D(x)* D(x)]*" 
n = l  

co 

+ Y. [ 6 ( - x - c ) *  D ( - x ) *  D( -x ) ]*"} ,  (5) 
n = l  

by letting x = pa + qb + rc, 

N,(x)={N¢-lrl (Irl ~ N c) 
( I r l -  > Nc). (6) 

The notations * and ,n stand for convolution and 
multiple convolution, respectively, defined as 

f(x)*g(x)=~f(y)g(x-y)dvy (7) 

and 

f(x)*"=[f(x)*("-')]*f(x), f (x)*°  = 6(x). (8) 

In the material, No crystallites are assembled with 
preferential orientation. Denote the reciprocal vectors 
of a, b and c as a*, b* and c*. The reciprocal vector 
c is perpendicular to the layer plane [see (66)]. Thus, 
the orientation of a crystallite is specified by the 
directions of c and a. We shall define the angles ~o, 
and r between the vectors, and the angles e, r/ and 
/X between planes, as shown in Fig. 1. As the primary 
axis, it is preferable to chose the fibre axis in the case 
of fibres, or the perpendicular of the plane of deposi- 
tion in the case of pyrolytic carbons. The directions 
of e* and a are then specified by e, ~: and/x. Therefore, 
preferential orientation of the crystallites is expressed 
by the orientation distribution function P(e, ~,/x), 
which is normalized so that 

2rr  ~- 2~r 

~ ~ P(e,~,/x)sin~d/xd~de=l. (9) 
e=O~5=Op.=O 

As for carbon fibres, P is well represented by the 
equation 

P(~) = r [ ( w +  3 ) / 2 ] / { 4 ~ ' / 2 r [ ( w  + 2)/2]} sin w ~, 

(10) 

where F(x) is the gamma function, and w is related 

to AsC, the half maximum width of P(~), as 

w = - In  2/ln [cos (A~/2)]. (11) 

Since sin ~ d~ de = sin r d r  dr/, dN, the number of 
the crystallites included in the region/x-/x + d/x, r - r  + 
d r  and r / - r /+d r /  is given as 

dN= NoP(e, s c,/X) sin r d/x d r  dr/, (12) 

where ~ and e are related to r and 77 by the spherical 
trigonometry as 

cos ~=  cos ~ cos r + s i n  ¢ sin r cos r/ (13) 

and 

cos r = cos q~ cos ~+ sin (¢ sin ~ cos e. (14) 

The basic relationships often used in this study are 
summarized in Appendix § 1. 

3. Diffraction by crystallite 

The X-ray diffraction intensity of a crystallite, It(s), 
is given as 

Ic(s) = I o~(p(x))l 2 Ie(S), (15) 

where 

s =  (Sd--Si)/h (16) 

and Sd and si are the unit vectors parallel to the 
diffracted and incident beams, respectively, A the 
X-ray wavelength, le(s) the diffraction intensity of 
one electron, and ~ the Fourier transform defined as 

~[f(x)]=~f(x)exp[-2rcis.x]dvx. (17) 

primary axis 

Fig. 1. Geometrical relationships of the primary axis, s, c* and a. 
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The vector s is represented by the linear combination 
of a*, b* and c* as 

s = ha* + kb* +/c*. (18) 

The absolute value ofs  is 2 (sin 0)/A, where 20 is the 
diffraction angle. Substitution of (1) into (15) gives 

I~ = I~(p~) l= l~(p, ) l= l~(p , ) l= l~(p~) l  = 

x I~(p~)12/~. (19) 

In (19), Ie is given by the Thomson theory, ~(pa) 
is the atomic scattering factor, and ]ff(p,)[ and I ~(p , ) l  
are calculated using (2) and (3), respectively. By 
taking account of the statistical distribution of the 
positions of respective layers in a layer set, ~(ps) is 
approximated by the average of ~(ps) given by the 
equation (see Appendix § 2) 

ff(p~)-~ ~ f f (ps )3 [y-  (a/3 + 2b/3 +c/2)]*  D(y) dry. 

(20) 

The function ],~(p~)]2 is obtained by the Fourier trans- 
form of pc(x)*pc(-x) (see Appendix § 3). 

Consequently, each term in (19) takes the form 

Ie=e4Ii(l+cos220)/(2mZc4L 2) (21) 

o%(p~) =4.47 exp [-0.04528nm2]s12]+ 1.53 (22) 

]~(p,)12=Z+2cos[Z~-(2h/3+k/3)]  (23) 

I~(p,)l 2=ZZ  = 2 N,,Nb exp {-Tr[N~(h ho) 2 
ho ko 

+ N2(k - ko)2]} (24) 

]~(p~)]2 = 1 + R 2 + 2R cos {2~r[h/3 + 2k/3 + l / Z -  ~']} 

and 

(25) 

f 
I~(p~)l == Lc/IC]]~ 2R2L~/{( 1 + R 2) 

x [[cl ~ + (1 - R~) ~ L~/4] 'j2} 

x exp {-TrL2(l - 1o- 2ff)2/[Icl = 

+ ( 1 - R2) z L2/4]} + ( 1 - R2)/( 1 + R 2) }, 
J 

(26) 

where e is the elementary electric charge, m the 
electron mass, c the light velocity, L the sample-to- 
receiver distance, Ij the intensity of the incident beam, 
and Lc the stacking height of a crystallite represented 
as  

Lc = Nclcl. (27) 

The parameters R and ~" are the functions of h, k and 
l, and represent respectively the absolute value and 
the phase factor of the Fourier transform of D(x), 

~ [  D(x)] = R exp [2Iri~']. (28) 

The regularity of stacking can be evaluated by R. 
From (57), it is known that in any case R satisfies 
the relation 

0 --- R --- 1. (29) 

For a crystallite with complete three-dimensional 
regularity, R = 1, and for randomly stacked layers, 
R = 0. If D ( - x )  = D(x), as is the case with Gaussian 
distribution, then ~" = 0. 

4. Diffraction by materials 

Since the diffraction intensity of a material, l(s),  is 
the sum of the diffraction intensity of crystallites, we 
have 

l(s) = j/c(S) dN. (30) 

Substitution of (12) and (19) into (30) yields 

2rr ~ 2~r 

I =  ~ ~ gol~(oc)l=l~(ps)121~(P,)l ~ 
19=0 r=O /x=0 

xl~(p,,)1213;(pa)[2IeP sin r dtz dr drl. (31) 

We shall define the angles between a and b, b and c, 
e and a as 7, a, /3, respectively. The spherical 
trigonometry gives the cosines of the angles between 
a and s, b and s, c* and s as sin r cos/x, sin r cos (/z + 
Y), cos ~', respectively. Thus the calculations of the 
inner products of s and a, s and b, s and c* by using 
(18) yield 

h--Isl  lal sin r cos/z, (32) 

k = Isl Ibl sin ~- cos (/z + Y) (33) 

and 

l = Isl Icl sin -i Y{v cos r/(lal Ibl Icl) 

+ sin r[cos/3 sin (/x + y) 

- c o s  c~ sin tz]}, (34) 

where v is the volume of the parallelepiped having 
a, b, e as adjacent edges. Equation (31) is the general 
conclusion of the wide-angle X-ray diffraction 
intensity of layer-type materials. 

Provided that P is independent of /z, and that 
a =/3 = rr/2, as is the case with layer-type carbons, 
(31) can be further simplified when (ho ko) ~ (0 0). In 
this case, the/z-dependent functions in the integrand 
of (31) are I~ (m) l  =, I~(p~)l =, I~ (p . ) l  =, R and ~'. We 
shall denote the values of ]sl, z and tz when (h k l) = 
(ho ko lo) as [Slo, Zo and tZo, respectively. Since I~(p,) l  2 
takes a large value only in the vicinity of tz =/Zo, /x 
in I~(p~)l 2, I~(pu)l  ~, R and ~" may be approximated 
by /-1.o. Then these functions can be removed from 
the integration concerning /x. The Taylor series of 
cos/z and cos (/z + Y) around/z = tz0 give 

h - ho = -Isl sin rlal sin/Zo(tZ -/Xo) 

+ (Isl sin r-ISlo sin ~o)lal cos ~o 
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and 

k-ko----Isl  sin ~lbl sin (IZo+ y ) ( / x -  tZo) 

+(Isl sin r -  Islo sin ~o)lbl cos (~,o+ ~,). 
After substi tut ion of  the above expressions into 
I~(p,)IL the integration of  ~" I~(p,)l z dtx is calculated 
by expanding the integration to the region -oo </x  < 
oo. The summations  ~ho~ko are removed from the 
integrations concerning r/ and ~'. 

It is concluded that the diffraction intensity of 
layer-type carbons with (ho ko) # (0 0) is given by the 
equation 

I - - E E  Nol~(p,,)lZI~ ~ I~(p~)lZl~(p,) l  z 
h 0 k 0 r=O 

27r 

+~ l~ (p , ) l  z d~ l~ (P . ) l  ~ S 
77=0 

P ( e ,  ~) dr/sin -r dr,  

(35) 
where 

I ,~(m)12 = 2 + 2  cos {27r[2hff3+kff3]}, (36) 

f I~(p, ) l  z d~, = VLolelV(Lcv=lsl sin r) 

× exp [ -~rL] ( l s l  sin r - l s l o  sin to)2], 
(37) 

I,~(m)I2= I + R2 + 2R 

xcos {2,n' [h~/3+2kff3+l /2-~]}  (38) 

R exp [27ri~'] = R(h , ,  k,,  l) 

× exp [2~-i~'(h~, k~, /)] ,  (39) 

hi = Isl sin rho/(ISlo sin ~'o) (40) 

k, : Isl sin rko/(Islo sin to) (41) 

and 

Islo sin "to = (h~/lal 2 + kZo/[b[ 2 

-2hoko cos ~,/lal Ibl) ' /Z/sin 3'. (42) 

The parameter  La represents the layer size defined as 

1 /L]  = s i n  2/-to/(Nblbl sin 7)z 

+ sinZ (#o+  y ) / ( N ,  lal sin y) z . (43) 

V stands for the volume of  one crystallite. 

5. Computation of diffraction profiles 

In this section, the effects of the structural parameters  
on the modula t ion  of  the h k reflexion profiles of 
carbon fibres are investigated numerically on the basis 
of (35). The distr ibution profiles in the form of l ( s ) / l i  
for the 110 and 112 reflexions were computed  with 
various values of R, La, A~" and ~o, where the values 
used for the parameters  without specifications are as 
follows: lal =lbl = 2.461, Icl =6-707 ~ (Ruland,  1968), 

7 = 2 7 r / 3  rad, ~ '=0,  R = 0 . 5  ( independent  o f  h~, ~o 
and l), L a = 5 0 A ,  L c = 5 0 / ~ ,  A ~ = 3 0 ,  q~= 
(meridional  reflexions), ho = ko = 1, - 3  <- lo <- 3, h = 
1 .542A (Cu Ka radiat ion),  NoV= 1 mm 3 and L =  
100 mm. The results of  computat ions are shown in 
Figs. 2 to 5. 

When R = 1, the 110 and 112 reflexion peaks appear  
at about 20 = 78 and 84 °, respectively (Fig. 2). The 
peak intensity ratio of the 112 reflexion to the 110 
reflexion decreases with decreasing R, and becomes 
0 when R = 0 .  Simultaneously,  the 110 reflexion 
moves towards higher angles, and becomes asym- 
metric. 

The layer size affects the sharpness of the reflexion 
peak (Fig. 3). The decrease in layer size makes the 
reflexion peaks broader.  

The degree of preferential orientation and the 
measuring direction change the peak intensity ratio 
of the 112 and 110 reflexions (Figs. 4 and 5). For the 
three curves in Fig. 5, the peak intensity ratio takes 
the largest value when q~ = 45 °. 

4 -- 

% 
2 -  ,"x, 

/5 
70 80 90 

2e ( ° )  

Fig. 2. 110 and 112 reflexion profiles of carbon fibres with R =0 
(---),  R =0.5 (- - - - - )  and R = 1 ( ). 

I., - 

% 
× 2 

/ '\ 
. . ° . ° . . ° o - " ' / "  

O ....... / 
70 80 90 

20 (0 )  

Fig. 3. 110 and 112 reflexion profiles of carbon fibres with Lo = 
10 A (---),  L, = 50/~ (m___) and Lo = 100 lk ( ). 
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6 .  D i s c u s s i o n  

The inter-layer spacing of layer carbons exhibits gen- 
erally a larger value than  that of  the graphite crystal- 
lite, 3-35 ~ .  From this, it can be considered that in a 
crystallite of  layer carbons the inter-layer spacing 
shows a skewed distr ibution having a long tail at 
larger inter-layer spacings. Hence, in this section, we 
shall  investigate how the parameters R and ~" for the 
001 reflexions are affected by the type of the distribu- 
tion funct ion D ( x ) .  

B y  defining the one-dimensional  Fourier t ransform 
~Tsy as 

c o  

f f~y [ f (y ) ]=  ~ f ( y )  exp (-27risy) dy 
- - o o  

% 

× 2 

N 

4 - 

70 

f \  
I ; 
e 

i : 
, 

// i 

-:,Z ./ -'I._ ~ I 
80 90 

2 e (  o ) 

Fig. 4. 1 10 and 1 12 refiexion profiles of carbon fibres with AsC = 0 ° 
(---), A~=30 ° (-----)  and random orientation ( ). The 
intensities with A~: = 0 ° have been multiplied by a factor 0-4. 

and assuming that D(x)  is expressed as 

D(x)  = 1  Da(p)Db(q)D~(r), 
/) 

where 

x = pa  + qb + rc, 

we obtain the equat ion 

~ [ D ( x ) ]  = ~;hv[Da(p)]~Tkq[Db(q)]J;u [Dc(r)] .  

When h = k = 0, we have 

~hp[D,(p)]= ~kq[Db(q)]= 1. 

In the case that Dc(r) is given by the Gauss ian  func- 
tion as 

O<(r) = (2v/2-~o-<) -I exp [-r2/2o-2], 

we have 

, ~ u [  D~(r) ] = exp (-2"rr z o°212). 

In the case that D~(r) is given by an asymmetr ic  
function as 

D~(r)={~00c)-' exp[-r/00~] (r_>-00c) 

( r < - o ¥ ) ,  

we have 

~tr[D~(r)]=(n~r200~12+ 1) -~/2 

x exp[2zrio'fl - i arctan (2zro'fl)]. 

In the above equations,  o'~ stands for the s tandard 
deviation of  r. 

When 00~ is small,  the general  relat ionship between 
,~t,[D~(r)] and o-~ is obtained.  Whatever  type D~(r) 
may be, it is expressed as 

D~( r) = o'-~l F( r/ oc), 

where F ( r )  is a probabi l i ty  distr ibution funct ion with 
average r - - 0  and s tandard deviation 1. Thus, we 
obtain 

4 - 

% 

× 2 

70 

/ ,~'~ "', . . : t : - ~ .  
. , , ' / ~ ~ ~ ~ _  

80 90 
2 0 (  ° ) 

Fig. 5. 110 and 112 reflexion profiles of carbon fibres with ~o =0 ° 
(---), ~o = 45 ° (-----)  and ~o = 90 ° ( ). 

~t , [Dc(r)]  = J F(y) exp[-27ri(00fl)y] dy. 
- - c o  

The Taylor expansion of the r ight-hand side of  the 
above equat ion concerning 00J gives 

, '~ 2 2 1 2  ~;tr [ D ~ ( r ) ] "~ 1 - z Tr 00 ~1 

+ (4/3)'n'3{ ~-oo r3Dc(r) dr} i13" 

R and ~" are given as 

R 1 " ~  2 2,2 (44) " "  - - Z q ' g  O ' c l  , 

sr--~ (2/3) ,n '2{f~ r3Dc(r) dr} l  3. (45) 

These relat ionships are valid for any kind of  distribu- 
tion funct ion D~(r) when h = k = 0 and o'~ is small.  
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1. Basic relationships 

The basic relationships often used in this study are 
summarized as follows. 

f (x )  * g(x) = g(x) *f(x).  (46) 

f (x)  * g(x) * h(x) = {f(x) * g(x)} * h(x) 

=f(x)*{g(x)*h(x)} .  (47) 

f (x )  * 8 ( x -  Xo) = f ( x -  Xo). (48) 

e x p [ - a x  2 ] * exp [ -bx  2] 

={Tr / (a+b)} l /2exp[ -abx2 / (a+b)] ,  (49) 

where * is the one-dimensional convolution, and a, 
b>O.  

f f [ f (x )g (x ) ]  = ,~[f(x)]  * o%[g(x)], (50) 

where * is the convolution with respect to s. 

~-[f(x)* g(x)] = f f [ f (x ) ] f f [g (x) ] .  (51) 

f f [ / ( x ) * " ]  = {o%[f(x)]}". (52) 

f f [ f (x ) ]  = , ~ [ f ( - x ) ] ,  (53) 

where f (x )  is a real function and stands for the 
complex conjugate. 

~ [ 8 ( x -  Xo)] = exp [ -2r r i  s .  Xo]. (54) 

~ ( 1 ) =  8(s), (55) 

where ,~ is the one-dimensional Fourier transform. 

~[eAp( -ax2)]=(Tr /a )  ~/2 exp[-rr2s2/a],  (56) 

where ,~ is the one-dimensional Fourier transform 
and a > 0 .  

I ~[f(x)]l-<.[  If(x)l dvx. (57) 

exp [ - ( a x  2 + bx + c)] dx 
--CO 

=(Tr/a) '/2 exp[(b2-4ac) / (4a)] ,  (58) 

where a > 0. 

sin 2 [ 7rNh ]/sin 2 [ rrh ] = Y. N 2 exp [ -  7rN2(h - ho)2], 
ho 

(59) 

where N is an integer. 

sinZ[TrNh]/(Trh) 2= N 2 exp[-7rN2h2] .  (60) 

1 / { a -  cos (27rh)} ~- E 2/(a 2 -1)  
ho 

where a > 1. 

x exp (-2"rr(h - ho)2/{(a - 1) 

x [ a - ( a  2 -  1)'/2]})+ 1/(a+ 1), 

(61) 

a* = (b x c ) / { a .  (b × c)}. (62) 

a* .  a* : Ibl21cl 2 sin 2 av -2 (63) 

a*. b* = lal Ibl Icl2v-2 (cos c~ c o s / 3 -  cos ,/). (64) 

a* .  a = 1. (65) 

a* .  b = 0. (66) 

Similar equations to (62)-(66) are valid for b* and c*. 

v = lal Ibl Icl{1 - c o s  2 ~ - c o s  2/3 - c o s  2 ~, 

+2  cos ce cos/3 cos T} '/2. (67) 

2. I~(p~)[ 2 

Substitution of (4) into (20) and with (54), (51) 
and (28), 

~(ps)  = 1 + ~ exp [ -2 r r i s .  y] 

× 8 [ y -  (a/3 + 2b/3 +c /2 ) ]*  D(y) dvy 

= 1+ ~ { 8 [ y - ( a / 3  + 2b/3 +c /2 ) ]*  D(y)} 

= 1 + exp [-27ri(h/3 + 2k/3 

+ I/2)]R exp [27ri~'], 

which leads to (25). 

3. I~(pc)l 2 

Equations (53), (51), (5) and (50) lead to 

[,~(pc)l 2= ,~[pc(x) * p~(-x)]  

= ~ [  N,(x)]* ff{6(x) 
o~ 

+ Z [ 6 ( x - c ) *  D(x)*  D(x)]*"  
n = l  

+ ~ [ 6 ( - x - e ) *  D ( - x ) *  D( -x) ]*n} .  
r l = l  

When R < 1, equations (51)-(54), (28) and (29) give 
co 

,~{6(x)+ }-'. [ 6 ( x - c ) *  D(x)* D(x)]*  n 
n = l  

+ ~ [ 6 ( - x - e ) *  D ( - x ) * D ( - x ) ] *  n} 
n = l  

oc) 

= Y~ {R: e x p [ - 2 7 r i ( / - 2 ~ ) ] } "  
n = 0  

+ ~ {R 2 e x p [ 2 7 r i ( l - 2 ~ ' ) ] } " - I  
n = 0  

= { 1 - R 2 exp [ - 2 7 r i ( l -  2if)]}-' 

+ { 1 - R 2 exp [2 r r i ( l -  2~')]}-' - 1 

= { 1 -  R4}/{1 + R 4 - 2 R  2 cos  [ 2 r r ( l -  2~')]}. 

On the other hand, from (6) and (55), 

~ [  Ni (x)] = v6( h )8(k) sin 2 ( 7rNfl)/(rd) 2. 
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By using (61), (60), (49) together with the relation 

exp [ - a ( x  - Xo) 2 ] * exp [ - b x  2 ] 

-- 6(x - Xo) * {exp [ - a x  2 ] * exp [ -  bx2]}, 

we obtain (26), which is also valid for R = 1. 
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Abstract 

Strain, as determined by diffraction techniques, is 
calculated from its constituents. First, the fraction of 
the crystals that have the proper orientation for 
diffraction. One degree of freedom is present: the 
angle of rotation ~ about the scattering vector that 
the diffracting crystals have in common. The proper 
orientations, expressed in Euler angles, lie on a line 
('trace') in orientation space. The density along the 
trace is asserted to be known as a Fourier series in 
~ .  Second, the strain in the diffracting crystals. The 
simplest possible models are discussed: the Voigt and 
Reuss approximations. The symmetries of the crystal 
(m3 or m 3 m )  and of the orientation distribution 
function (o.d.f.) are taken into account. The dilatation 
in spacing of the reflecting planes is found as a Fourier 
series in ~ also. Only the zeroth, first and second 
harmonic (including phase angles: five parameters) 
play a part. The diffraction strain is the average over 
the angle ~ of the dilatation, weighted with the 
product of the orientation density and the square of 
the structure factor. For each contributing trace, the 
corresponding Fourier coefficients have to be multi- 
plied and added to obtain the diffraction strain. The 
symmetry of the diffraction pole figure is derived. 

I. Introduction 

The existence of lattice distortions in polycrystalline 
(metal) samples is well established by means of 
diffraction techniques. The interpretation of these 
strains is still the subject of discussion. More 
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specifically, the question whether these strains can be 
explained by longer-range internal stresses and the 
character of the relation between the measured strain 
and the originating stresses is not yet clear. In this 
paper the influence of texture in the sample is studied. 
A very simple model is adopted: the material is sup- 
posed to be single phase, the orientation distribution 
function is known and either the stress (Reuss model) 
or the strain (Voigt model) is uniform over the irradi- 
ated volume.* Even in this model the treatment is 
elaborate because of the many parameters involved. 
The measured diffraction strain is a weighted average 
of the dilatation in spacing of the diffracting set of 
planes. The average is split into its constituents: the 
volume fraction of the differently oriented grains that 
diffract, where the texture plays a part, and the strain 
in these crystals, where the elastic anisotropy is deter- 
mining. It is shown that texture leads to the observed 
"non-linearities" and "oscillations' in the plots of dHK L 
vs sin2 t~. Comparison with experiments must show 
whether the texture is responsible for the entire effect 
or that the other causes mentioned in the literature 
(D/Slle, 1979; James & Cohen, 1980; Hauk, 1984) play 
a part also. 

2. Experimental procedures to measure 
diffraction strain 

The spacing in the set of reflecting planes ( H K L )  
is determined by diffraction techniques. The mono- 

* This implies that any effect of prior plastic deformation leading 
to a correlation between stress or deformation state and orientation 
of the grain is not considered. 
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